
Argv Library
Version 2.7.0

February 2010

Gray Watson

Copyright 1992 to 2010 by Gray Watson.
Published by Gray Watson
Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, provided also that the chapter entitled “Copying” are
included exactly as in the original, and provided that the entire resulting derived work is
distributed under the terms of a permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that the chapter entitled
“Copying” may be included in a translation approved by the author instead of in the original
English.

Argv Library 1

Argv Library

The argv library has been designed to handle the argument processing needs of most
Unix software and to provide a consistent usage framework for user applications.

The library is reasonably portable having been run successfully on at least the following
operating systems: AIX, BSDI, DG/UX, FreeBSD, HPUX, Irix, Linux, MS-DOG, NeXT,
OSF, Solaris, SunOS, Ultrix, Unixware, and even Unicos on a Cray Y-MP.

The package includes the library, configuration scripts, shell-script utility application,
test program, and extensive documentation (text, texi, info, ps). The library and its doc-
umentation are available online at URL http://256.com/sources/argv/. See Section 2.2
[How To Get], page 3.

I can be reached via my web page http://256.com/gray/ with any questions or feed-
back. Please include the version number of the library that you are using as well as your
machine and operating system types.

Gray Watson.

http://256.com/sources/argv/
http://256.com/gray/

Chapter 1: Library Copying Conditions 2

1 Library Copying Conditions

Copyright 1992 to 2010 by Gray Watson.
Gray Watson makes no representations about the suitability of the software described

herein for any purpose. It is provided “as is” without express or implied warranty. The
name of Gray Watson cannot be used in advertising or publicity pertaining to distribution
of the document or software without specific, written prior permission.

Permission to use, copy, modify, and distribute this software for any purpose and without
fee is hereby granted, provided that the above copyright notice and this permission notice
appear in all copies, and that the name of Gray Watson not be used in advertising or
publicity pertaining to distribution of the document or software without specific, written
prior permission.

Gray Watson makes no representations about the suitability of the software described
herein for any purpose. It is provided "as is" without express or implied warranty.

Chapter 2: How to Use the Library 3

2 How to Use the Library

2.1 The General Concepts Behind the Library

One thing that almost all Unix executables need to do is process the command line
arguments. Whether this is to enable verbose mode or specify the files for a utility to work
on, code has to be written to process these user specified options.

int main(int argc, char **argv)
{

...
}

As you must know, the command line arguments in most Unix systems are passed in
as arguments to main() (seen above). The argc integer argument contains the number of
arguments specified. The argv variable holds the arguments themselves. It can be thought
of as a pointer to a list of character pointers – or an array of character pointers.

To get a particular argument from argv, you use argv[x] where x is an integer whose
value is from 0 to argc - 1. In most Unix implementations, the zeroth argument is always
the name the program was executed with. For instance, if you typed ‘./ls -al’, argc
would equal 2 and the value of argv[0] would be ‘"./ls"’. The value for argv[1] would
be ‘"-al"’.

Currently, most programmers either write code on a per program basis to process argu-
ments or they use the getopt() routine. Writing argument processing code for each pro-
gram results in improper and inconsistent argument handling. Although better, getopt()
does not provide the structure needed to ensure conformity in argument processing and still
requires significant code to be written by the programmer.

The goal for this library was to achieve a standardized way of processing arguments –
especially in terms of error and usage messages. Important consideration was also given to
reducing the programming time necessary to enable the functionality.

2.2 How to get the library.

The newest versions of the argv library are available on the web at
http://256.com/sources/argv/.

The versions in this repository also include such files as a postscript version of the manual
and other large files which may not have been included in the distribution you received.

2.3 Installing the Library

To configure, compile, and install the library, follow these steps carefully.

1. Type sh ./configure to configure the library. You may want to first examine the
‘config.help’ file for some information about configure. Configure should generate
the ‘Makefile’ and some configuration files automatically.
NOTE : It seems that some versions of tr (especially from HP-UX) don’t understand
tr ’[a-z]’ ’[A-Z]’. Since configure uses tr often, you may need to either get GNU’s
tr (in their textutils package) or generate the ‘Makefile’ and ‘conf.h’ files by hand.

http://256.com/sources/argv/

Chapter 2: How to Use the Library 4

2. You may want to examine the ‘Makefile’ and ‘conf.h’ files created by configure to
make sure it did its job correctly.

3. Typing make should be enough to build ‘libargv.a’ and the ‘argv_shell’ utility. If
it does not work, please send me some notes so future users can profit from your
experiences.
NOTE : The code is pretty dependent on a good ANSI-C compiler. If the configure
script gives the ‘WARNING’ that you do not have an ANSI-C compiler, you may still be
able to add some sort of option to your compiler to make it ANSI. If there such is an
option, please send it to the author so it can be added to the configure script.

4. Typing make tests should build the ‘argv_t’ test program. This can be run and given
arguments to test the various library features.

5. Typing make install should install the ‘libargv.a’ library in ‘/usr/local/lib’, the
‘argv_shell’ utility in ‘/usr/local/bin’, and the ‘argv.info’ documentation file in
‘/usr/local/info’.
You may have specified a ‘--prefix=PATH’ option to configure in which can
‘/usr/local’ will have been replaced with ‘PATH’.

See the Getting Started section to get up and running with the library. See Section 2.4
[Getting Started], page 4.

2.4 Getting Started with the Library

This section should give you a quick idea on how to get going.
1. Make sure you have the latest version of the library. It is available on the web at

http://256.com/sources/argv/. See Section 2.2 [How To Get], page 3.
2. Follow the installation instructions on how to configure and make and install the library

(i.e. type: make install). See Section 2.3 [Installation], page 3.
3. Examine the ‘argv_t.c’ test program source to see an example of how to program with

the library. After adding the appropriate argv_t structure array to your main source
file, you need to compile and link your programs with the library.

4. The first time your program is run, the library makes a number of checks as to the
validity of the argument structures being used. You may have to note and fix reported
problems.

5. Run your program with the ‘--usage’ argument and voila.

http://256.com/sources/argv/

Chapter 3: The Library’s Operations 5

3 The Library’s Operations

3.1 The argv t Structure and It’s Usage

The argv t argument structure is as follows:
typedef struct {

char ar_short_arg; /* short argument, ’d’ if ’-d’ */
char *ar_long_arg; /* long version of arg, ’--delete’ */
short ar_type; /* type of variable */
void *ar_variable; /* address of associated variable */
char *ar_var_label; /* label for variable description */
char *ar_comment; /* comment for usage message */

} argv_t;

The ar_short_arg element contains the character value of the short option (’d’ for ‘-d’)
or special codes such as ARGV LAST which identifies the last element in the array. See
Section 3.2 [Special Short Args], page 5.

The ar_long_arg element (if not-NULL) holds the string which is the long version of
ar_short_arg. For instance, with ‘-d’, you might have "delete". This would mean that
‘-d’ and ‘--delete’ would be equivalent. ‘--’ is the long-option prefix per POSIX specs.

You would define an array of these arguments at the top of the file with main() in it.
static char copy = ARGV_FALSE;

static argv_t args[] = {
{ ’c’, "copy", ARGV_BOOL, &cp_files, NULL, "copy-files flag" },
{ ’g’, "group", ARGV_CHAR_P, &group, "group", "name of group to set" },
...
{ ARGV_LAST }

};

...

int main(int argc, char ** argv)
{
argv_process(args, argc, argv);

}

3.2 The Special ar short arg Values

There are 3 types of arguments:

optional Arguments that may or may not be supplied by the user.

mandatory
Arguments that must be supplied by the user. For instance grep must be given
an expression on the command line.
If the argument is a mandatory argument which has no -%c prefix then the
ar_short_arg element should be assigned ARGV MAND.

Chapter 3: The Library’s Operations 6

maybe Arguments that might be specified by the caller but are not mandatory. For
instance, you can grep a file or you can grep standard-input. The file should be
a maybe argument.
If this is a maybe argument then use ARGV MAYBE in the ar_short_arg
field.

To mark the last entry in the structure list use ARGV LAST.

3.3 The argv t Structure and It’s Usage

Ar type holds the type of the argument whether an optional argument or mandatory.
Below are the available values for this field.

ARGV_BOOL
character type, sets the variable to ARGV TRUE if used

ARGV_BOOL_NEG
like ARGV BOOL but sets the variable to ARGV FALSE if used

ARGV_BOOL_ARG
like ARGV BOOL but takes a yes/no argument

ARGV_CHAR
a single character

ARGV_CHAR_P
a string of characters (character pointer)

ARGV_FLOAT
a floating pointer number

ARGV_SHORT
a short integer number

ARGV_INT an integer number

ARGV_U_INT
an unsigned integer number

ARGV_LONG
a long integer number

ARGV_U_LONG
an unsigned long integer number

ARGV_BIN a binary base-2 number (0s and 1s)

ARGV_OCT an octal base-8 number (0 to 7)

ARGV_HEX a hexadecimal base-16 number (0 to 9 and A to F)

ARGV_INCR
a integer type which is incremented each time it is specified

ARGV_SIZE
a long integer size number which understands b for bytes, k for kilobytes, m for
megabytes, and g for gigabytes

Chapter 3: The Library’s Operations 7

ARGV_U_SIZE
an unsigned long integer version of ARGV SIZE

ARGV_BOOL_INT
like ARGV BOOL except the variable is an integer and not a character

ARGV_BOOL_INT_NEG
like ARGV BOOL NEG except the variable is an integer and not a character

ARGV_BOOL_INT_ARG
like ARGV BOOL ARG except the variable is an integer and not a character

For printing out of the type of the argument on the command line, use the
‘--argv-display’ option which will display the argument, its type and value. It will
display the variables’ default values if no arguments specified before it on the command line
otherwise it will show the values the variables are set to after processing the arguments.

Basically the argument processing routines, examine the type of the variable, absorb
another argument (if necessary), and then translate the string argument (if necessary) and
write the data into the address stored in the ar variable field.

ARGV BOOL, ARGV BOOL NEG, ARGV INCR, ARGV BOOL INT, and
ARGV BOOL INT NEG are special in the above list in that they do not require another
argument. With ‘ls -l’, for example, the ‘-l’ flag lives on its own. With ‘install -m 444
...’, on the other hand, ‘444’ is an octal number argument associated with ‘-m’ and will
be translated and assigned to the ‘-m’ mode variable.

3.4 Using Arguments Which “Absorb” Arrays.

Needs to be written. Sorry.

Chapter 4: Invoking Programs Which Use the Library 8

4 Invoking Programs Which Use the Library

4.1 How to get usage messages from argv programs

If a program ‘install’ has the library compiled in you should be able to do a ‘install
--usage-long’ to get the long-format usage message.

Usage: install
[-c] or --copy-files = copy file(s), don’t move %t
[-g group] or --group-id = group id name (default bin) %s
[-m octal-mode] or --mode-value = permissions mode value %o
[-o owner] or --owner-id = owner id name (default bin) %s
[-s] or --strip = strip destination binary %t
[file(s)] directory/destination = files to install or mkdir arg

In the above example, the program install’s usage message is detailed. The ‘[-c]’ line
details the copy-files flag. You can either enable it with a ‘-c’ or ‘--copy-files’. The
description of the flag follows with lastly, a ‘%t’ showing that it is a true/false flag.

The ‘[-g]’ line shows the group-id flag. It is different from the ‘-c’ flag since, if used,
it takes a group string argument (notice the ‘%s’ at the end of the line indicating it takes a
string argument).

‘install --usage-short’ or just ‘--usage’ will get you a condensed usage message:
Usage: install [-cs] [-g group] [-m octal-mode] [-o owner] [file(s)]

directory/destination

4.2 How to Specify Arguments to Argv Programs

Specifying arguments to a program which uses the library is quite straight-forward and
standardized. Once you have learned how to do it once, you can use any program with it.

There are five basic types of arguments as defined by the library:

true/false flags
Do not have an associated value and the program will get a True if one is
specified else False.
The ‘-c’ in ‘install -c’.

variable flags
Have an associate value which will be supplied to the program.
The ‘-m’ in ‘install -m 0644’ will get the value ‘0644’.

values Arguments without a ‘-’ and are associated values for the variable flags.

mandatory
Arguments without a ‘-’ but are not associated to variable flags. These can
be supplied to the program if allowed. They are mandatory in that they must
be supplied. If the program asks for 3 arguments, 3 must be supplied. NOTE
that order is important with these.
The ‘from’ and ‘to’ arguments in ‘install from to’.

Chapter 4: Invoking Programs Which Use the Library 9

maybe These are the same as the mandatory arguments except they are optional ar-
guments and can but do not have to be supplied.
The ‘file’ argument in ‘ls file’ since ‘ls’ does not require a file to be listed
to work.

The values for the variable flags are assigned in a straight First-In-First-Out queue. In
‘install -m -g 0644 bin’, the value ‘0644’ is assigned to the ‘-m’ flag and the value ‘bin’
is assigned to ‘-g’.

Additional values that cannot be matched to variable flags will become mandatory or
maybe arguments if the program is configured to accept them.

install from -c -m -g 0644 -o wheel -s jim to

In the previous convoluted example, ‘from’ and ‘to’ are mandatory arguments, ‘-c’ and
‘-s’ are true/false flags, ‘-m’ gets assigned ‘0644’, ‘-g’ gets ‘wheel’, and ‘-o’ gets ‘jim’. It
would be much easier to write it as:

install -cs -m 0644 -g wheel -o jim to from

4.3 Long Versus Short Arguments

Needs to be written. Sorry.

4.4 Global Settings For All Argv Programs

An environment variable is a variable that is part of the user’s working environment and
is shared by all the programs. The ‘GLOBAL_ARGV’ variable is used by the argv library to
customize its behavior at runtime. It can be set by hand and should probably be entered
into your shell’s runtime configuration or RC file.

To set the variable, C shell (csh or tcsh) users need to invoke:
setenv GLOBAL_ARGV value

Bourne shell (sh, bash, ksh, or zsh) users should use:
GLOBAL_ARGV=value
export GLOBAL_ARGV

The value in the above example is a comma separated list of tokens each having a
corresponding value. The tokens and their values are described below:
• close – close argument acceptance

Enables the handling of arguments such as ‘-m=444’ where ‘-m’ is a flag and ‘444’ is its
value.
Values: disable, enable.
• disable – treat ‘=’ like a normal argument
• enable (default) – enable the ‘-x=10’ format

• env – environment variable handling
Enables the processing of the ‘ARGV_*’ variables. If you have a set of options that you
always use for ‘ls’ for instance, you cat set the ‘ARGV_LS’ environmental variable to
hold these options. For instance: ‘setenv ARGV_LS "-sCF"’.
Values: none, before, after.

Chapter 4: Invoking Programs Which Use the Library 10

• none – No processed at all
• before (default) – options from env variable are processed Before command line
• after – env options processed After command line

• error – handling of usage errors
Whenever you do not use a command correctly, this token determines how the library
reports errors to you.
Values: none, see, short, shortrem, long, all.
• none – on errors print nothing but error message
• see (default) – on errors print see –usage for more info.
• short – on errors print the short-format usage messages
• shortrem – on errors print short-format + how to get long
• long – on errors print the long-format usage messages
• all – on errors print the long-format usage messages + help, etc.

• multi – the handling of arguments specified more than once
If you use am argument twice on the command line, this token determines if the library
should say it is an error.
Values: accept, reject.
• accept (default) – it’s NOT an error if specified more than once
• reject – it’s an error if specified more than once

• usage – usage messages for –usage
Determines what messages the library prints when you use the ‘--usage’ option.
Values: short, shortrem, long, all.
• short (default) – default is the short-format messages
• shortrem – default is the short-format messages + how to get long
• long – default is the long-format messages
• all – default is the long-format messages + help, usage, version

Examples:
accept -x=10, no env variables, long messages on errors,
accept multiple uses, and print all messages on --usage.

setenv GLOBAL_ARGV close=accept,env=none,error=long,multi=accept,usage=all

process env variable options before command line,
and reject multiple argument uses

setenv GLOBAL_ARGV env=before,error=long,multi=reject

4.5 Arguments For a Specific Argv Program

Needs to be written. Sorry.

Concept Index 11

Concept Index

A
ANSI-C compiler . 4
author . 1

B
bash usage . 9
Bourne shell usage . 9
building the library . 3

C
C shell usage . 9
command line arguments . 3
compiling the library . 3
conf.h file . 3
configure script . 3
configuring the library . 3
copying . 2
csh usage. 9

D
downloading the library . 3

E
environment variable . 9

G
getopt . 3
getting started . 4
getting the source . 3
GLOBAL ARGV . 9

H
how to begin . 4

I
installing the library . 3
introduction . 1

J
jump start . 4

K
ksh usage . 9

L
library permissions . 2
license . 2

M
making the library . 3

P
permissions of the library . 2

Q
quick start . 4

S
sh usage . 9

T
tcsh usage . 9

U
unix command line . 3

W
where to begin . 4

Z
zsh usage. 9

i

Table of Contents

Argv Library . 1

1 Library Copying Conditions 2

2 How to Use the Library . 3
2.1 The General Concepts Behind the Library. 3
2.2 How to get the library. 3
2.3 Installing the Library . 3
2.4 Getting Started with the Library . 4

3 The Library’s Operations. 5
3.1 The argv t Structure and It’s Usage . 5
3.2 The Special ar short arg Values . 5
3.3 The argv t Structure and It’s Usage . 6
3.4 Using Arguments Which “Absorb” Arrays. 7

4 Invoking Programs Which Use the Library . . 8
4.1 How to get usage messages from argv programs 8
4.2 How to Specify Arguments to Argv Programs 8
4.3 Long Versus Short Arguments . 9
4.4 Global Settings For All Argv Programs 9
4.5 Arguments For a Specific Argv Program 10

Concept Index . 11

	Argv Library
	Library Copying Conditions
	How to Use the Library
	The General Concepts Behind the Library
	How to get the library.
	Installing the Library
	Getting Started with the Library

	The Library's Operations
	The argv@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}t Structure and It's Usage
	The Special ar@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}short@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}arg Values
	The argv@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}t Structure and It's Usage
	Using Arguments Which ``Absorb'' Arrays.

	Invoking Programs Which Use the Library
	How to get usage messages from argv programs
	How to Specify Arguments to Argv Programs
	Long Versus Short Arguments
	Global Settings For All Argv Programs
	Arguments For a Specific Argv Program

	Concept Index

